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Natural convection flow of a viscous fluid with viscosity
inversely proportional to linear function of temperature
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Abstract—Free convection over an isothermal vertical wavy cone immersed in a fluid with variable viscosity is studied in this
paper. We consider the boundary-layer regime where the Grashof number is very large and assume that the wavy surfaces have
O(1) amplitude and wavelength. Using the appropriate variables, which reduce the wavy cone to a flat one, the basic equations
are transformed to nonsimilar boundary-layer equations. These equations are then solved numerically using a very efficient implicit
finite-difference method known as Keller box scheme. Detailed results for the streamlines, isotherms, reduced skin friction and heat
transfer rates for a selection of parameter sets consisting of the viscosity parameter, wavy surface amplitude, half cone angle and
Prandtl number.  2001 Éditions scientifiques et médicales Elsevier SAS

natural convection / temperature dependent viscosity / vertical wavy cone

Nomenclature

a amplitude of the wavy surface of the cone
Cf skin friction coefficient

g acceleration due to the gravity . . . . . . m·s−2

Gr Grashof number
L characteristic length associated with the

wavy surface . . . . . . . . . . . . . . . . m
Nu local Nusselt number
p pressure
Pr Prandtl number
r local radius of the flat surface of the cone
T temperature . . . . . . . . . . . . . . . . K
u, v velocity components along (x, y)-axes
x, y Cartesian coordinates along and normal to

the flat surface of the cone, respectively

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . m2·s−1

β coefficient of thermal expansion . . . . . K−1

γ constant defined by equation (7)

∗ Correspondence and reprints.
E-mail address: anwar@du.bangla.net (M.A. Hossain).

ε constant defined by equation (15)
µ(T ) variable viscosity . . . . . . . . . . . . . kg·m−1·s−1

σ(x) surface geometry function
θ reduced temperature
ξ , η pseudo-similarity variables
ρ density . . . . . . . . . . . . . . . . . . . kg·m−3

φ cone half-angle . . . . . . . . . . . . . . rad
ψ stream function

Subscripts

w wall conditions
∞ ambient conditions
x differentiation with respect to x

1. INTRODUCTION

Roughened surfaces are encountered in several heat
transfer devices such as flat plate solar collectors and
flat plate condensers in refrigerators. Larger scale surface
nonuniformities are encountered, for example, in cavity
wall insulating systems and grain storage containers.
The only papers to date which study the effects of
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such nonuniformities on the vertical convective boundary
layer flow of a Newtonian fluid are those of Yao [1], and
Moulic and Yao [2, 3]. Hossain and Pop [4] investigated
the magnetohydrodynamic boundary layer flow and heat
transfer from a continuous moving wavy surface, while
the problem of free convection flow from a wavy vertical
surface in the presence of a transverse magnetic field was
studied by Hossain et al. [5]. On the other hand, Rees and
Pop [6–8] investigated the free convection boundary layer
induced by vertical and horizontal surfaces exhibiting
small-amplitude waves embedded in a porous medium.
Recently, Hossain and Rees [9] have considered the
combined effects of thermal and mass diffusion on the
natural convection flow of a viscous incompressible fluid
from a vertical wavy surface. The effects of waviness of
the surface on the heat flux and mass flux distributions
in combination with the species concentration for a fluid
with Prandtl number equal to 0.7 has been studied in
that paper. Very recently, Pop and Na [10] studied both
the constant wall temperature and constant heat flux
distribution on the natural convection flow over a vertical
wavy frustum of a cone.

In all the above studies the authors assumed that
both the viscosity and thermal conductivity of the flu-
ids are constant throughout the flow regime. However,
it is known that these physical quantities may change
significantly with temperature, see the review article by
Kakaç [11]. When the effect of variable viscosity is
included in the analysis, Gary et al. [12] and Mehta
and Sood [13] have found that the flow characteristics
substantially change compared with the constant vis-
cosity case. Further, Hady et al. [14], Kafoussias and
Williams [15], and Kafoussias et al. [16] have studied
the effects of variable viscosity on the mixed convection
flow from a vertical flat plate in the region near the lead-
ing edge using the local nonsimilarity method. Very re-
cently, Hossain et al. [17, 18] have considered the natural
convection from a vertical wavy surface and a truncated
cone placed in a fluid with variable viscosity when the
viscosity is inversely proportional to a linear function of
temperature, a model which was proposed by Ling and
Dybbs [19]. Also, Hossain and Munir [20], and Hossain
et al. [21] investigated the mixed convection flow over
a vertical flat plate and, respectively, the forced convec-
tion flow over a wedge for a similar law of variable vis-
cosity.

In this paper we focus our attention on the free
convection boundary layer over a vertical wavy cone
driven by a uniform wall temperature immersed in a fluid
with a temperature dependent viscosity using the same
model as proposed by Ling and Dybbs. The transformed
boundary-layer equations are solved numerically using

a very efficient finite-difference method known as Keller
box scheme [22]. Consideration is given to the situation
where the buoyancy forces assist the flow for various
values of the viscosity variation parameter, ε, with the
Prandtl number Pr = 0.7 and 7.0, which are appropriate
for air and water, respectively. The results allow us to
predict the different flow and heat transfer characteristics
that can be observed when the relevant parameters are
varied.

2. FORMULATION OF THE PROBLEM

Consider the steady laminar free convection of a vis-
cous and incompressible fluid along a vertical wavy cone
as shown in figure 1, where the viscosity of the fluid de-
pends on its temperature. We assume that the wavy sur-
face of the cone is described by the equation

ŷw = σ̂ (x̂) = â sin(πx̂) (1)

where â is the amplitude of the wavy surface of the
cone. We also assume that the temperature of the cone
surface is held constant at Tw and is higher than the
temperature T∞ of the ambient fluid. The boundary layer
analysis outlined below allows σ̂ (x̂) to be arbitrary, but
our detailed numerical work will assume that the wavy
surface is described by equation (1).

The governing equations are the continuity, Navier–
Stokes and the energy equations in two-dimensional
Cartesian coordinates (x̂, ŷ) (see figure 1). Under the

Figure 1. Physical model and coordinate system.
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usual Boussinesq approximation, these equations can be
written as

∂(r̂û)

∂x̂
+ ∂(r̂v̂)

∂ŷ
= 0 (2)

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= − 1

ρ

∂p̂

∂x̂
+ ∇(µ∇û)

+ gβ(T − T∞) cosφ (3)

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= − 1

ρ

∂p̂

∂ŷ
+ ∇(µ∇v̂)

− gβ(T − T∞) sinφ (4)

û
∂T

∂x̂
+ v̂

∂T

∂ŷ
= α∇2T (5)

where (û, v̂) are the velocity components along the (x̂, ŷ)

axes, ∇2 is the two-dimensional Laplacian operator, g is
the acceleration due to gravity, ρ is the density, α is
the thermal diffusivity, β is the coefficient of thermal
expansion, µ(T ) is the viscosity of the fluid depending
on the temperature T , φ is the cone half-angle and r̂ is
the local radius of the flat surface of the cone, which is
given by

r̂ = x̂ sinφ (6)

Out of the many forms of viscosity variation, which
are available in the literature, we will consider only the
following form proposed by Ling and Dybbs [19]:

µ = µ∞
1 + γ (T − T∞)

(7)

where γ is a constant and µ∞ is the viscosity of the
ambient fluid. The boundary conditions for equations
(2)–(5) are

û = 0, v̂ = 0, T = Tw at ŷ = ŷw = σ̂ (x̂)

û = 0, T = T∞, p = p∞ as ŷ → ∞ (8)

We now introduce the following non-dimensional bound-
ary-layer variables:

x = x̂

L
, y = ŷ − σ̂

L
Gr1/4

r = r̂

L
, p = L2

ρν2∞
Gr−1p̂

u = ρL

µ∞
Gr−1/2û, v = ρL

µ∞
Gr−1/4(v̂ − σxû)

θ = T − T∞
Tw − T∞

, a = â

L
, σ (x) = σ̂ (x)

L

σx = dσ̂

dx̂
= dσ

dx
, Gr = gβ(Tw − T∞) cosφ

ν2∞
L3

(9)

where L is the characteristic length associated with the
wavy surface of the cone, ν∞ (= µ∞/ρ) is the reference
kinematic viscosity and Gr is the Grashof number.
Introducing transformations (9) into equations (2)–(5)
and after ignoring terms of small orders in Gr, we obtain
the following boundary layer equations:

∂(ru)

∂x
+ ∂(rv)

∂y
= 0 (10)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Gr1/4σx

∂p

∂y
+ (1 + σ 2

x )

1 + εθ

∂2u

∂y2

− ε(1 + σ 2
x )

(1 + εθ)2

∂θ

∂y

∂u

∂y
+ θ (11)

σx

(
u
∂u

∂x
+ v

∂u

∂y

)
− σxxu

2

= −Gr1/4 ∂p

∂y
+ σx(1 + σ 2

x )

1 + εθ

∂2u

∂y2

− εσx(1 + σ 2
x )

(1 + εθ)2

∂θ

∂y

∂u

∂y
− θ tanφ (12)

u
∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

(
1 + σ 2

x

)∂2θ

∂y2 (13)

with the boundary conditions (8) becoming

u = 0, v = 0, θ = Tw at y = 0

u = 0, T = T∞, p = 0 as y → ∞ (14)

In equations (11) and (12) the viscosity variation parame-
ter ε is defined as

ε = γ (Tw − T∞) (15)

From equation (7) it can clearly be seen that the
dimensionless viscosity µ/µ∞ lies in the range between
1/(1 + ε) and 1; its value decreasing with increasing
temperature when ε > 0. Equation (11) indicates that
the pressure gradient along the y direction is O(Gr−1/4),
which implies that the lowest order pressure gradient
along x direction can be determined from the inviscid
flow solution. However, this pressure gradient is zero
since there is no externally induced free stream. On the
other hand, equation (12) shows that Gr1/4∂p/∂y is O(1)
and is determined by the left-hand side of this equation.
Thus, the elimination of ∂p/∂y between equations (11)
and (12) leads to
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u
∂u

∂x
+ v

∂u

∂y
= 1 + σ 2

x

1 + εθ

∂2u

∂y2
− ε(1 + σ 2

x )

(1 + εθ)2

∂u

∂y

∂θ

∂y

+
(

1 − σx tanφ

1 + σ 2
x

)
θ − σxσxx

1 + σ 2
x

u2 (16)

If we now introduce the nonsimilar variables:

ψ = x3/4rf (x, η), η = x−1/4y

θ = θ(x, η), r = x sinφ
(17)

where ψ is the stream function which is defined accord-
ing to u = ∂ψ/∂y and v = −∂ψ/∂x , equations (10), (13)
and (16) become

1 + σ 2
x

1 + εθ
f ′′′ + 7

4
ff ′′ −

(
1

2
+ xσxσxx

1 + σ 2
x

)
f ′2

− ε(1 + σ 2
x )

(1 + εθ)2
θ ′f ′′ +

(
1 − σx tanφ

1 + σ 2
x

)
θ

= x

{
f ′ ∂f ′

∂x
− f ′′ ∂f

∂x

}
(18)

1

Pr

(
1 + σ 2

x

)
θ ′′ + 7

4
f θ ′ = x

(
f ′ ∂θ

∂x
− θ ′ ∂f

∂x

)
(19)

along with the boundary conditions

f (x,0)= f ′(x,0) = 0, θ(0, x)= 1

f ′(x,∞) = θ(0,∞)= 0
(20)

The quantities of physical interest are the skin friction
and the rate of heat transfer which can be described
in terms of the skin friction coefficient, Cf , and local
Nusselt number, Nu, in the form:

Cf

(
Gr

x

)1/4

= (1 + σ 2
x )

1/2

1 + ε
f ′′(0, ξ) (21)

Nu

(
Gr

x

)−1/4

= −(
1 + σ 2

x

)1/2
ξ3/4θ ′(0, ξ) (22)

3. RESULTS AND DISCUSSION

Equations (18) and (19) along with the boundary
conditions (20) were solved numerically by the finite-
difference method known as Keller box method. Since
a good description of this method and its application to
boundary-layer flow problems is given in the book by
Cebeci and Bradshaw [23] as well as in many papers
such as, for example, Hossain et al. [24], it will not

(a) (b)

(c) (d)

Figure 2. (a) Dimensionless streamlines for ε =0.0, Pr =7.0,
α =0.0 and φ =30◦. (b) Dimensionless isotherms for ε =0.0,
Pr =7.0, α =0.0 and φ =30◦. (c) Dimensionless streamlines
for ε =2.0, Pr =7.0, α =0.0 and φ =30◦ . (d) Dimensionless
isotherms for ε =2.0, Pr =7.0, α =0.0 and φ =30◦.

(a) (b)

(c) (d)

Figure 3. (a) Dimensionless streamlines for ε =0.0, Pr =7.0,
α =0.2 and φ =30◦. (b) Dimensionless isotherms for ε =0.0,
Pr =7.0, α =0.2 and φ =30◦. (c) Dimensionless streamlines
for ε =2.0, Pr =7.0, α =0.2 and φ =30◦ . (d) Dimensionless
isotherms for ε =2.0, Pr =7.0, α =0.2 and φ =30◦.

be presented here. Results are given for the variable
viscosity parameter ε = 0.0 (constant viscosity), 0.5, 1.0
and 2.0; the amplitude parameter a = 0.0 (flat cone) and
0.2 (wavy cone); Prandtl number Pr = 0.7 (air) and 7.0
(water); cone half-angle φ = 0◦ (flat plate), 30◦ and 45◦.
Figures 2 and 3 illustrate the effect of the parameter ε on
the development of streamlines and isotherms for a flat
cone (a = 0.0) and a wavy cone (a �= 0.0), respectively.
These figures clearly show the difference between the
flow and heat transfer characteristics over a flat cone and
a wavy one, respectively. For a wavy cone the isotherms

369



M.A. Hossain et al.

(a) (b)

Figure 4. Variation of the reduced skin friction f ′′(x,0) (a) and
reduced heat transfer −θ ′(x,0) (b) with x for different values
of ε with Pr =0.7, φ =30◦ .

(a) (b)

Figure 5. Variation of the reduced skin friction f ′′(x,0) (a) and
reduced heat transfer −θ ′(x,0) (b) with x for different values
of ε with Pr =7.0, φ =30◦ .

show a sinusoidal behavior, while for a flat cone these are
parallel lines showing the dominant mode of heat transfer
between the two configurations.

Variation of the reduced skin friction coefficient
f ′′(x,0) and reduced heat transfer −θ ′(x,0) as a func-
tion of x are shown in figures 4–7 for fluids with Pr = 0.7
and 7.0, and selected values of the parameters ε, a and φ.
It is seen, as expected, that the values of f ′′(x,0) and
−θ ′(x,0) are lower for a wavy cone than for a flat cone.
This can be explained as follows. When the heated sur-
face of the cone is not flat (a �= 0), the component of
the buoyancy force along the cone is reduced by a fac-
tor (1 − σx tanφ)/(1 + σ 2

x ), as shown in equation (18),
from its maximum value of a flat cone. Consequently,
the boundary layer thicknesses are locally smaller, and
hence local rates of the skin friction coefficient f ′′(x,0)
and the heat transfer rate −θ ′(x,0) are reduced. How-
ever, figures 6 and 7 show that the changes are more pro-
nounced for larger cone angles. Further, figures 4 and 5
indicate that an increase in the variable viscosity para-
meter ε leads to an increase of the skin friction and heat
transfer rates from the cone. For a wavy cone (a �= 0) the
skin friction and heat transfer rates are smaller than for
a flat cone (a = 0). Since the thermal resistance increases
as the fluid accumulates between the trough and crest, it
will reduce the values of skin friction and heat transfer
rates. Finally, we see from figures 4–7 that the heat trans-
fer rates increase with the increase of the Prandtl num-
ber Pr and viscosity parameter ε, and this is in agreement

(a) (b)

Figure 6. Variation of the reduced skin friction f ′′(x,0) (a) and
reduced heat transfer −θ ′(x,0) (b) with x for different values
of φ with Pr =0.7, ε =1.0.

(a) (b)

Figure 7. Variation of the reduced skin friction f ′′(x,0) (a) and
reduced heat transfer −θ ′(x,0) (b) with x for different values
of φ with Pr =7.0, ε =1.0.

with the results reported by Kakaç [11] and Kafoussias et
al. [16] for the corresponding problem of natural convec-
tion over a vertical flat plate immersed in a fluid of vari-
able viscosity. Therefore, the net benefit of heat transfer
of wavy surfaces is very significant and the application of
a periodically corrugated wall for heat exchanger or solar
collector is a sound approach.

4. CONCLUSIONS

In this paper a theoretical study of the laminar free
convection boundary-layer heat transfer between a verti-
cal wavy cone with a constant surface temperature and
a fluid of variable viscosity has been done. New vari-
ables to transform the complex geometry into a sim-
plex shape were used and a very efficient implicit finite-
difference (Keller box) scheme was employed to solve
the boundary-layer equations. It has been found that the
effect of increasing the viscosity parameter ε is to in-
crease the skin friction coefficient and heat transfer rate.
It was also observed that the heat transfer rate increases
with the increase of the Prandtl number and this is in
agreement with the known results from the open liter-
ature. It is worth mentioning that the amplitude of the
waves must be within an O(Gr−1/4) range in order to
balance the direct and indirect buoyancy forces. Strong
enough curvature may produce flow separation, or rather,
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the flow develops a region of reverse flow at the surface
of the wavy cone. A detailed study of this flow behavior
was recently presented by Rees and Pop [7].
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